
PHYSICAL REVIEW E 68, 036304 ~2003!
Energy budgets in Charney-Hasegawa-Mima and surface quasigeostrophic turbulence
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We study energy transfer in unbounded Charney-Hasegawa-Mima and surface quasigeostrophic turbulence.
The possible inverse-cascading quantities in these systems are, respectively,I[*0

`k22E(k) dk and J
[*0

`k21E(k) dk, whereE(k) is the kinetic energy spectrum. The supposed direct-cascading quantities for
both surface quasigeostrophic and Navier-Stokes turbulence are shown to be bounded. We derive a constraint
on E(k) for the surface quasigeostrophic system.
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Two-dimensional ~2D! turbulence governed by th
Navier-Stokes~NS! equations, the Charney-Hasegawa-Mim
~CHM! equation@1–3#, and the so-calleda turbulence equa-
tions @4# is characterized by the simultaneous existence
two inviscid quadratic invariants. For unbounded 2D NS t
bulence, the conserved quantities are the kinetic energE
[*0

`E(k)dk and fluid enstrophyZ[*0
`k2E(k)dk, where

E(k) is the kinetic energy spectrum. For CHM turbulenc
the conserved quantities are the total energyE1l2I and to-
tal enstrophyZ1l2E, where I[*0

`k22E(k)dk and l is a
positive constant. The class ofa turbulence features
*0

`ka22E(k)dk and *0
`k2a22E(k)dk as inviscid invariants.

Statistical quasiequilibrium arguments@5# show the possible
existence of a dual cascade in 2D NS turbulence: an inv
energy cascade to low wave numbers and a direct enstro
cascade to high wave numbers. These arguments, when
plied to the other two cases, imply the possibility of a du
cascade of the corresponding quadratic quantities@6,7#.

Interesting cases arise where the supposed dir
cascading quantity is the kinetic energy. This occurs foa
turbulence whena51, a model known as the surface qua
geostrophic~SQG! equation. Another case is the CHM equ
tion in the asymptotic limitl/s→`, wheres is the forcing
wave number. The system obtained in this limit is often
ferred to as theasymptotic model~AM ! @8,9# or thepotential
energy regimeof the CHM system. In the former system, th
inviscid invariants areJ[*0

`k21E(k)dk andE. For the latter
case, the inviscid invariants becomeI andE. This rules out
the possibility of the kinetic energy being transferred towa
low wave numbers by nonlinear interactions, in marked c
trast to 2D NS turbulence, where the kinetic energy is tra
ferred to ever-larger scales at a steady rate. As a co
quence, the possibility that the kinetic energy may gr
unbounded, as in the NS system, is in jeopardy. In fact,
will establish that the kinetic energy of the SQG system
mains bounded. This implies that the spectrumE(k) must be
shallower thank21 for k,s, which is significantly shallower
than that predicted theoretically and found numerically
other systems. Such a constraint may not exist for the C
system; however, if the kinetic energy grows unbounded
does so at a vanishing growth rate. This applies for alll/s
.0, the potential energy regime being a rather peculiar c
where both of the supposed cascading quantities may g
unbounded~a dynamical behavior forbidden in the oth
systems!.
1063-651X/2003/68~3!/036304~4!/$20.00 68 0363
f
-

,

se
hy
ap-
l

t-

-

-

d
-

s-
e-

e
-

r
M
it

e,
w

The CHM equation, which governs the potential vortici
of an equivalent-barotropic fluid is@2,8,10#

]

]t
~D2l2!f1J~f,Df!5nD2f1 f . ~1!

Heref(x,y,t) is the variable part of the free surface heig
or the stream function of the fluid andf is the forcing. The
spatial operatorsJ(•,•) andD are, respectively, the Jacobia
and two-dimensional Laplacian. The positive constantl has
the dimensions of a wave number~corresponding to the
Rossby deformation radius! andn is the kinematic viscosity
coefficient. Equation~1! is known as the quasigeostroph
potential vorticity equation. It also governs the evolution
quasi-2D fluctuations of the electrostatic potential in t
plane perpendicular to a strong magnetic field applied u
formly to a plasma, in which casef(x,y,t) is the electro-
static potential andl21 is the ion Larmor radius.

Similar to the NS equations@5,11#, the evolution of the
ensemble-averaged CHM energy spectrumE(k) is

S 11
l2

k2 D d

dt
E~k!5T~k!22nk2E~k!1F~k!. ~2!

HereT(k) andF(k) are, respectively, the ensemble-averag
energy transfer and energy input. The energy transfer fu
tion T(k) is the same as in the NS case:

E
0

`

T~k!dk5E
0

`

k2T~k!dk50. ~3!

As a consequence of these conservation laws, the invi
unforced dynamics features two quadratic invariants: the
tal energyE1l2I and the total enstrophyZ1l2E.

In this work, F(k) is assumed to have a spectrally loca
ized supportK5@k1 ,k2#, wherek1.0, and its energy injec-
tion e[*KF(k)dk and enstrophy injectionh[*Kk2F(k)dk
satisfy 0,k1

2e<h<k2
2e. A hypothesis of this sort is often

employed in theoretical studies and is a common numer
situation for the 2D NS system~see Refs.@12,13# and refer-
ences therein!. In fact, this inequality trivially holds for any
bandlimited positive injection. We define a forcing wav
numbers[Ah/e which, by hypothesis, lies inK. There are
three dynamical regimes, which exhibit quite distinct beha
iors. The first is the NS regime obtained whenl/s→0. The
©2003 The American Physical Society04-1
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second is the AM model obtained in the limitl/s→`. Fi-
nally, we have the intermediate regime where the ratiol/s is
finite.

We first review some fundamental dynamical propert
of the NS system@5,14–16#, which will be compared with
those of other regimes and of the SQG system. In the li
l/s→0, Eq. ~2! reduces to the well-known NS energ
balance

d

dt
E~k!5T~k!22nk2E~k!1F~k!. ~4!

Consider an initial injectionE0 at wave numbers, corre-
sponding to an enstrophyZ05s2E0. The redistribution ofE0
toward k@s by nonlinear interactions involves a large i
crease in the total enstrophy; hence, a direct energy cas
is prohibited. On the other hand, the redistribution of vir
ally all E0 towardk!s involves a loss of virtually all enstro
phy Z0; hence, to make up for this loss, the remainder of
kinetic energy must be transferred towardk@s. The spread-
ing of the injected energy from the forcing region into t
extremes in this manner is a basis for the classical dual
cade theory of 2D NS turbulence. The energy that gets tra
ferred tok!s enjoys virtually no dissipation, while the en
strophy that gets transferred tok@s will be completely
dissipated. That gives rise to an important feature in t
case: the kinetic energy is allowed to grow unbounded
time, but the enstrophy must remain bounded. A sim
mathematical basis for this fact can be seen from the ev
tion of energy and enstrophy:

d

dt
E522nZ1e, ~5!

d

dt
Z522nP1s2e, ~6!

as obtained by multiplying Eq.~2! by k2 and integrating both
the original and the resulting equations over all wave nu
bers, noting from the conservation laws~3! that the nonlinear
terms drop out. The quantityP[*0

`k4E(k)dk is known as
the palinstrophy. Now, if a quasisteady state is establishe
which the injectione becomes steady,Z is required to be
bounded from above bye/(2n). Otherwise, ifZ.e/(2n),
the energy would approach zero in the limitt→`. On reex-
pressingP in Eq. ~6!, we find at sufficiently long times, whe
E becomes less thanZ/(2s2), that

dZ

dt
522nP1s2e52nFs4E22s2Z

2E
0

`

~k22s2!2E~k!dkG1s2e

<23ns2Z1s2e

,2ns2Z. ~7!
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This would imply Z→0 as t→`, a clear contradiction.
Hence,Z satisfiesZ<e/(2n). However, similar consider-
ations do not apply to the potential energy regime of
CHM equation, making it difficult in that case to establis
whether the corresponding direct-cascading quantityE re-
mains bounded.

In the potential energy regime, Eq.~2! reduces to

l2

k2

d

dt
E~k!5T~k!22nk2E~k!1F~k!, ~8!

for k!l. The two inviscid quadratic invariants in Eq.~8! are
I and E; the dissipation effectively becomes hypervisco
~bi-Laplacian! and the turbulence evolves on a much slow
time scale~by a factors2/l2). This is apparent from the
evolution equations forI andE:

d

dt
I 52

2n

s2
Z1

e

s2
, ~9!

d

dt
E52

2n

s2
P1e, ~10!

where t5(s2/l2)t is a rescaled time variable. The arg
ments concerning the turbulent cascade in the NS case a
to this regime, withE and Z replaced byI and E, respec-
tively. More precisely, for an initial injectionE0 at wave
number s ~corresponding toI 05E0 /s2) to spread out in
wave number space, the conservation ofI andE by nonlinear
interactions requires thatI 5I 0 andE5E0 be invariant. Now
the redistribution ofE0 towardk!s involves a large increase
in I; hence, an inverse cascade ofE is prohibited. This is
analogous to the exclusion of a direct energy cascade in
turbulence. On the other hand, a redistribution of virtually
of E0 toward k@s involves a loss of virtually all ofI 0;
hence, to make up for this loss, the remainder of the kin
energy is required to be transferred towardk!s. This is
analogous to the dual-cascade scenario in NS turbulenc
which the transfer of virtually all of the kinetic energy tok
!s corresponds to the transfer of the remaining amoun
k@s, due to the conservation of enstrophy. We note, in pa
ing, that although the inverse cascade carries virtually
kinetic energy towardk50, one cannot, in general, rule ou
the unboundedness ofE in the limit t→`. This is due to the
fact that the dissipation ofI is given in terms ofZ not E, so
a buildup ofE ~although at a vanishing rate! toward k50
does not prevent the steady growth of the potential ener

We now examine the dynamical behavior of the CH
system for a finite ratiol/s. The evolution of the total en-
ergy and enstrophy is governed by

d

dt
~E1l2I !522nZ1e, ~11!

d

dt
~Z1l2E!522nP1s2e. ~12!
4-2
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Similar to the inverse-cascade scenario in NS turbulenc
growth of the total energy requires 2nZ,e. Such a growth
ought to proceed toward low wave numbers~inverse cas-
cade!; otherwise, the fluid enstrophyZ would increase until
the energy growth ratee22nZ decreases to zero~for a
steady injection ratee). Now an inverse cascade of the tot
energy involves two unequal parts. Fors,l, the inverse
cascade is predominantly a cascade of potential energy.
s.l, the inverse cascade is mainly a cascade of kin
energy until it arrives atl. Upon reachingl, the growth rate
is shared equally between the potential and kinetic com
nents. A transition to favor the growth rate of the potent
energy occurs when the cascade proceeds to lower w
numbers. To see quantitatively how the kinetic ene
growth rate diminishes, we assume that a quasisteady s
trum has been established down to a wave numberk0,l in
an ongoing inverse cascade of the total energy. Suppose
spectrum scales asE(k)5ak2g for k0<k,l. The growth
rate of I andE are, respectively, given by

dI

dt
5

dI

dk0

dk0

dt
52ak0

222g dk0

dt
, ~13!

dE

dt
5

dE

dk0

dk0

dt
52ak0

2g dk0

dt
. ~14!

It follows that dE/dt5(k0 /l)2l2dI/dt, which diminishes
like k0

2/l2, ask0 /l→0, leaving the potential energy as th
only cascading quantity. Equation~13! can be used to esti
mate k0. Let l2dI/dt5ce, where 0,c,1, we find k0
;$al2/@c(11g)et#%1/(11g). If, following Ref. @7#, we sup-
pose thatE(k) continues to build up on the Kolmogoro
spectrum ak25/3 for k,l, we would find k0
;@3al2/(8cet)#3/8. For comparison we have k0
;@3a/(2cet)#3/2 for the NS case.

For a finite ratiol/s, one would intuitively expect a com
promise between NS and AM dynamics. The arguments
the preceding paragraph suggest that in this intermediate
gime, a persistent inverse cascade of the total energy~after
the spectrum aroundl becomes steady fors.l) involves
only the potential energy and carries virtually no kinetic e
ergy ~or enstrophy!. Physically, l acts as a shield to th
kinetic energy with respect to the inverse cascade pro
@10#. At the same time, a direct cascade of the total ens
phy, if realizable, involves only the fluid enstrophy and c
ries virtually no kinetic energy~or potential energy!. This
dynamical behavior is accessible to numerical analysis@10#.

There remains the question as to whether the kinetic
ergy is a finite dynamical quantity. Although the inverse c
cade in the regionk,l is predominantly a cascade of po
tential energy, the ‘‘leaking’’ of kinetic energy to ever-larg
scales cannot be ruled out. Nevertheless, ifE is to become
unbounded ast→`, it must do so at a vanishing growth rat

Two special cases ofa turbulence, governed by

]

]t
~2D!a/2f1J„f,~2D!a/2f…5D~2D!a/2f1 f ,
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are the Navier-Stokes equations (a52, D5nD) and the sur-
face quasigeostrophic equation@a51, D52m(2D)1/2].
The latter system originates from the geophysical cont
describing the motion of a stratified fluid with small Ross
and Ekman numbers@4,17,18#. Note that the dissipation op
erator is hypoviscous; this is the natural physical dissipat
mechanism for the SQG system. A viscous dissipation op
tor D}D, which would be equivalent to the molecular vi
cosity in NS turbulence, has also been considered in the
erature for numerical purposes@19–21#. The kinetic energy
spectrum of this system is studied in Ref.@22#, where it is
rigorously shown thatE(k)<ck22 for k,s, wherec is a
constant. The inviscid unforced version is known to resem
the 3D Euler equation in many aspects, particularly the p
sibility of spontaneous development of singularities@23#.
This may be attributable to the fact that both systems h
similar energy budgets~as shown below, energy is trans
ferred to small scales!.

The energy spectrumE(k) evolves according to

d

dt
E~k!5S~k!22mkE~k!1F~k!, ~15!

where the transfer functionS(k) satisfies

E
0

`

k21S~k!dk5E
0

`

S~k!dk50. ~16!

Like the CHM equation in the potential energy regime, no
linear transfer in this system conserves the kinetic energ
the possible direct-cascading quantity. The supposed inve
cascading quantity isJ. The dissipation ofJ is given in terms
of E, in analogy to the NS system, where the dissipation
energy is given in terms of enstrophy. Therefore, we c
invoke the arguments leading to the boundedness of en
phy in the NS case to conclude that the kinetic energy
bounded in the SQG system. To this end, we consider
evolution ofJ andE governed by

d

dt
J522mE1

e

s
, ~17!

d

dt
E522mE

0

`

kE~k!dk1e, ~18!

where s[*KF(k)dk/*Kk21F(k)dkPK and a corres-
ponding localization hypothesis for the forcing is assum
Namely, we require 0,k1*Kk21F(k)dk<e[*KF(k)dk
<k2*Kk21F(k)dk. Now, if a quasisteady state is esta
lished, in which the injectione becomes steady,E is required
to be bounded from above byE<e/(2ms). Otherwise,J
would approach zero in the limitt→`, which in turn would
entail
4-3
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dE

dt
522mE

0

`

kE~k!dk1e52mFs2J22sE

2E
0

`

~k2s!2k21E~k!dkG1e

<23msE1e

<2msE, ~19!

for sufficiently large times. This would implyE→0 as t
→`, a clear contradiction. Hence,E is bounded from above
by E<e/(2ms) in a quasisteady state.

The boundedness ofE imposes a stiff constraint onE(k),
requiring that the spectrum be shallower thank21 for k,s.
The dimensional analysis predictionE(k);k21 would imply
a logarithmic divergence of*0

sE(k)dk.
We attempted to mimic SQG turbulence in an unbound

domain using a doubly periodic dealiased pseudospe
273132731 simulation and a Cash-Karp Runge-Kut
Fehlberg temporal integrator. The turbulence was driv
from zero initial conditions at timet50 by a random forcing
bandlimited to@1198,1202# with velocity amplitude 0.0058.
We used the truncated Fourier-transformed dissipation op
tor D(k)52mkH(k21202), whereH is the Heaviside unit
step function andm50.054. While this truncation may in
principle break the constraint imposed by the boundednes
E and lead to a steeper slope, one nevertheless obtain
roughly k21 transient spectrum~time averaged fromt57 to
t58) shown in Fig. 1. This is considerably shallower th
the NS k25/3 spectrum and much tighter than thea priori
estimateE(k)<ck22 obtained in Ref.@22#. The spike at
wave number 1200 is a manifestation of the forcing.

A direct energy cascade requires that the dissipation
energy, which is proportional to*0

`kE(k)dk, be primarily
dominated by the high wave numbers, so thatE(k) must be
at least as shallow ask22 for k.s. Otherwise, energy will
be dissipated in the vicinity of the forcing wave numbers.

For a bounded system in equilibrium, Eqs.~17! and ~18!
imply *k0

` (s2k)E(k)dk50, wherek0 is the lowest wave
id

oli

c

03630
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-
n
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number corresponding to the system size. Following R
@13#, if E(k) has the formE(k)5ak2g for k<s and E(k)
5bk2b for s<k<kn , wheres/kn<k0 /s, we obtain the con-
straint g1b>3. In the limits s/kn→0 and k0 /s→0, this
constraint becomesg1b53.

In conclusion, CHM turbulence~for a general ratiol/s
.0) is characterized by an inverse cascade of the pote
energy, which carries virtually no kinetic energy, ast→`.
More precisely, an inverse cascade of kinetic energy is
cluded in the regionk,l. This makes the CHM dynamic
distinct from its NS counterpart, although before the inve
cascade reachesl, CHM turbulence may have much in com
mon with NS turbulence. Similarly, the kinetic energy in th
SQG system is prohibited from being transferred to la
scales, just like the enstrophy for the NS system. In parti
lar, the kinetic energy is the dissipation agent of the suppo
inverse-cascading quantity and is thereby required to
bounded. As a consequence, the energy spectrum is
lower thank21 for k,s.

This work was funded by the Pacific Institute for th
Mathematical Sciences and the Natural Sciences and E
neering Research Council of Canada.

FIG. 1. Inverse cascade of SQG turbulence in the absenc
large-scale dissipation.
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