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Energy budgets in Charney-Hasegawa-Mima and surface quasigeostrophic turbulence
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We study energy transfer in unbounded Charney-Hasegawa-Mima and surface quasigeostrophic turbulence.
The possible inverse-cascading quantities in these systems are, respedtwéfjk >E(k) dk and J
=[5k E(Kk) dk, whereE(k) is the kinetic energy spectrum. The supposed direct-cascading quantities for
both surface quasigeostrophic and Navier-Stokes turbulence are shown to be bounded. We derive a constraint
on E(k) for the surface quasigeostrophic system.
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Two-dimensional (2D) turbulence governed by the The CHM equation, which governs the potential vorticity
Navier-StokegNS) equations, the Charney-Hasegawa-Mimaof an equivalent-barotropic fluid i2,8,10
(CHM) equation[1-3], and the so-called turbulence equa-
tions [4] is characterized by the simultaneous existence of
two inviscid quadratic invariants. For unbounded 2D NS tur-
bulence, the conserved quantities are the kinetic engrgy
=[3E(k)dk and fluid enstrophyz=[{k?E(k)dk, where Here ¢(x,y,t) is the variable part of the free surface height
E(k) is the kinetic energy spectrum. For CHM turbulence,or the stream function of the fluid arfds the forcing. The
the conserved quantities are the total endfgy\?l and to-  spatial operators(-,-) andA are, respectively, the Jacobian
tal enstrophyZ+\%E, wherel=[3k ?E(k)dk and\ is a  and two-dimensional Laplacian. The positive constarias
positive constant. The class of turbulence features the dimensions of a wave numbécorresponding to the
Jok* 2E(k)dk and [5k?*2E(k)dk as inviscid invariants. Rossby deformation radiysind v is the kinematic viscosity
Statistical quasiequilibrium argumeris] show the possible ~coefficient. Equation(1) is known as the quasigeostrophic
existence of a dual cascade in 2D NS turbulence: an invergeotential vorticity equation. It also governs the evolution of
energy cascade to low wave numbers and a direct enstropipasi-2D fluctuations of the electrostatic potential in the
cascade to high wave numbers. These arguments, when a?ane perpendicular to a strong magnetic field applied uni-
plied to the other two cases, imply the possibility of a dualformly to a plasma, in which casé(x,y,t) is the electro-
cascade of the corresponding quadratic quantiéed. static potential and. ~* is the ion Larmor radius.

Interesting cases arise where the supposed direct- Similar to the NS equationk5,11], the evolution of the
cascading quantity is the kinetic energy. This occursdor €ensemble-averaged CHM energy spectii(k) is
turbulence whervr=1, a model known as the surface quasi-
geostrophidSQQG equation. Another case is the CHM equa-
tion in the asymptotic limitn/s—, wheres is the forcing
wave number. The system obtained in this limit is often re-
ferred to as thesymptotic modglAM) [8,9] or thepotential ~ HereT(k) andF (k) are, respectively, the ensemble-averaged
energy regimef the CHM system. In the former system, the energy transfer and energy input. The energy transfer func-
inviscid invariants ard= [k 'E(k)dk andE. For the latter ~ tion T(k) is the same as in the NS case:
case, the inviscid invariants becorhand E. This rules out
the possibility of the kinetiq energy being transferred toward fwT(k)dkz kaZT(k)dkz 0. 3)
low wave numbers by nonlinear interactions, in marked con- 0 0
trast to 2D NS turbulence, where the kinetic energy is trans- ) o
ferred to ever-larger scales at a steady rate. As a conséS @ consequence of these conservation laws, the inviscid
quence, the possibility that the kinetic energy may growunforced dynamics features two quadratic invariants: the to-
unbounded, as in the NS system, is in jeopardy. In fact, wéal energyE+\?l and the total enstrophg+\’E.
will establish that the kinetic energy of the SQG system re- In this work, F(k) is assumed to have a spectrally local-
mains bounded. This implies that the spectfiith) must be ized supporK=[k; k], wherek;>0, and its energy injec-
shallower thark ! for k<s, which is significantly shallower tion e=J¢F(k)dk and enstrophy injectiom= [ «k*F (k)dk
than that predicted theoretically and found numerically forsatisfy 0<kfe<#n=<k3e. A hypothesis of this sort is often
other systems. Such a constraint may not exist for the CHMmployed in theoretical studies and is a common numerical
system; however, if the kinetic energy grows unbounded, isituation for the 2D NS systerisee Refs[12,13 and refer-
does so at a vanishing growth rate. This applies foind  ences therein In fact, this inequality trivially holds for any
>0, the potential energy regime being a rather peculiar cas®andlimited positive injection. We define a forcing wave
where both of the supposed cascading quantities may gromumbers= /e which, by hypothesis, lies iK. There are
unbounded(a dynamical behavior forbidden in the other three dynamical regimes, which exhibit quite distinct behav-
systems iors. The first is the NS regime obtained whefs—0. The

%(A—A2)¢+J(¢,A¢)=VA2¢+1‘. (1)

)\2

1+ %E(k)=T(k)—2vk2E(k)+F(k). 2)

I
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second is the AM model obtained in the limifs—oco. Fi-  This would imply Z—0 ast—o, a clear contradiction.
nally, we have the intermediate regime where the raf®is  Hence, Z satisfiesZ=<e/(2v). However, similar consider-
finite. ations do not apply to the potential energy regime of the

We first review some fundamental dynamical propertiesCHM equation, making it difficult in that case to establish
of the NS systen}5,14—-14, which will be compared with whether the corresponding direct-cascading quarkitye-
those of other regimes and of the SQG system. In the limitmains bounded.

Ns—0, Eg. (2) reduces to the well-known NS energy In the potential energy regime, E() reduces to
balance
)\2
d , FmE(|<):T(|<)—2V|<2E(k)+F(k), (8
aE(k)zT(k)—ka E(k)+F(k). (4)

for k< \. The two inviscid quadratic invariants in E@) are
Consider an initial injectiorgE, at wave numbels, corre- | and E; the dissipation effectively becomes hyperviscous
sponding to an enstroptg,=s°E,. The redistribution oE,  (bi-Laplacian and the turbulence evolves on a much slower
toward k>s by nonlinear interactions involves a large in- time scale(by a factors?/A?). This is apparent from the
crease in the total enstrophy; hence, a direct energy cascadeolution equations for andE:
is prohibited. On the other hand, the redistribution of virtu-

ally all Ey towardk<s involves a loss of virtually all enstro- d 2y €

phy Z,; hence, to make up for this loss, the remainder of the E-I =—-—Zt, 9
kinetic energy must be transferred towéset s. The spread- S S

ing of the injected energy from the forcing region into the

extremes in this manner is a basis for the classical dual cas- d 2v

cade theory of 2D NS turbulence. The energy that gets trans- E.E: - ? Pte, (10)

ferred tok<<s enjoys virtually no dissipation, while the en-

strophy that gets transferred fe>s will be completely .00 r=(s?/\?)t is a rescaled time variable. The argu-

dissipated. That gives rise to an important feature in th.'sments concerning the turbulent cascade in the NS case apply

case. the kinetic energy is allowed to grow unbound_ed Mo this regime, withE and Z replaced byl and E, respec-
time, but the enstrophy must remain bounded. A simpl ively. More precisely, for an initial injectiorE, at wave

mathematical basis for this fact can be seen from the eVOluﬁumbers (corresponding tol g E /32) w0 snread out in
tion of energy and enstrophy: p g Wo=Ep p

wave number space, the conservatioh ahdE by nonlinear
interactions requires that 1 andE=E( be invariant. Now
EE— 2 7+ e (5) f[he redistribution_ of, towardk<s involves a Igrge increqse
dt ' in I; hence, an inverse cascade bfis prohibited. This is
analogous to the exclusion of a direct energy cascade in NS
d turbulence. On the other hand, a redistribution of virtually all
—Z7Z=—2vP+5%, (6) of E, toward k>s involves a loss of virtually all oflg;
dt hence, to make up for this loss, the remainder of the kinetic
energy is required to be transferred towdeeks. This is
as obtained by multiplying Eq2) by k* and integrating both  analogous to the dual-cascade scenario in NS turbulence, in
the original and the resulting equations over all wave numwhich the transfer of virtually all of the kinetic energy ko
bers, noting from the conservation la¥® that the nonlinear <s corresponds to the transfer of the remaining amount to
terms drop out. The quantity=gk*E(k)dk is known as  kss, due to the conservation of enstrophy. We note, in pass-
the palinstrophy. Now, if a quasisteady state is established, img, that although the inverse cascade carries virtually no
which the injectione becomes steady, is required to be kinetic energy towardk=0, one cannot, in general, rule out
bounded from above by/(2v). Otherwise, ifZ>¢€/(2v),  the unboundedness Efin the limit 7—o. This is due to the
the energy would approach zero in the liritc. On reex-  fact that the dissipation dfis given in terms o not E, so
pressingP in Eq. (6), we find at sufficiently long times, when a buildup of E (although at a vanishing ratéoward k=0
E becomes less tha#/(2s?), that does not prevent the steady growth of the potential energy.
We now examine the dynamical behavior of the CHM

dz 5 . 5 system for a finite ratio\/s. The evolution of the total en-
gi- 2vPtste=2vs’E-257Z ergy and enstrophy is governed by
—f (k2—s?)2E(k)dk| + s%€ a(EJr)\ )=—2vZ+e, (11
0
<-3vs°Z+5% d
—(Z+N\%E)=—2vP+5%. 12
<822, 7) grZTNE)=—2vPse (12
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Similar to the inverse-cascade scenario in NS turbulence, are the Navier-Stokes equations= 2, D=rA) and the sur-
growth of the total energy requires’Z<e. Such a growth face quasigeostrophic equatijm=1, D= —u(—A)Y7.
ought to proceed toward low wave numbémsverse cas- The latter system originates from the geophysical context
cade; otherwise, the fluid enstroph® would increase until  describing the motion of a stratified fluid with small Rossby
the energy growth rate—2vZ decreases to zer@for a  and Ekman numbeig},17,18. Note that the dissipation op-
steady injection rate). Now an inverse cascade of the total erator is hypoviscous; this is the natural physical dissipation
energy involves two unequal parts. Fe<\, the inverse mechanism for the SQG system. A viscous dissipation opera-
cascade is predominantly a cascade of potential energy. Ftor DA, which would be equivalent to the molecular vis-
s>\, the inverse cascade is mainly a cascade of kineticosity in NS turbulence, has also been considered in the lit-
energy until it arrives ak. Upon reaching\, the growth rate  erature for numerical purpos¢$9—21. The kinetic energy

is shared equally between the potential and kinetic compospectrum of this system is studied in RE22], where it is
nents. A transition to favor the growth rate of the potentialrigorously shown thaE(k)<ck 2 for k<s, wherec is a
energy occurs when the cascade proceeds to lower wawmnstant. The inviscid unforced version is known to resemble
numbers. To see quantitatively how the kinetic energythe 3D Euler equation in many aspects, particularly the pos-
growth rate diminishes, we assume that a quasisteady spesibility of spontaneous development of singularitie3].
trum has been established down to a wave nurkger\ in ~ This may be attributable to the fact that both systems have
an ongoing inverse cascade of the total energy. Suppose tlsémilar energy budget¢as shown below, energy is trans-
spectrum scales a§(k)=ak™” for ky<k<\. The growth ferred to small scal@s

rate ofl andE are, respectively, given by The energy spectrurg(k) evolves according to
dl dl dkg _,_,dkg d
— = = Y~
gt dkg at - 2" T (13 FE(K=S(K)~ 2uKE(K) +F(K), (15)
dE_dEdkg_ ’deo 14 where the transfer functio8§(k) satisfi
E‘mﬁ‘_ako T (14) unctio§(k) satisfies

It follows that dE/dt=(ko/\)2A2d1/dt, which diminishes
like ké/)\z, asky/N—0, leaving the potential energy as the
only cascading quantity. Equatiqd3) can be used to esti-

mate ko. Let N2dI/dt=ce, where 0<c<1, we find ko _ o _ _
~{ar?¥[c(1+7) et]}l’(“ 7. If, following Ref. [7], we sup- Like the CHM equation in the potential energy regime, non-

pose thatE(k) continues to build up on the Kolmogorov linear transfer in this system conserves the kinetic energy as
spectrum ak 5% for k<x, we would find ko the possible direct-cascading quantity. The supposed inverse-
~[3an?(8cet)]¥®. For comparison we havek, cascading quantity i8. The dissipation of is given in terms
~[3al(2cet) ¥ for the NS case. of E, in analogy to the NS system, where the dissipation of
For a finite ratiok/s, one would intuitively expect a com- EN€rgy is given in terms of enstrophy. Therefore, we can

promise between NS and AM dynamics. The arguments iri]nvoke the arguments leading to the boundgdngss of enstro-

the preceding paragraph suggest that in this intermediate r@Y in the NS case to conclude that the kinetic energy is

gime, a persistent inverse cascade of the total entigr ound_ed in the SQG system. To this end, we consider the

the spectrum aroundl becomes steady fa&>\) involves ~ €volution ofJ andE governed by

only the potential energy and carries virtually no kinetic en-

ergy (or enstrophy. Physically,\ acts as a shield to the d €

kinetic energy with respect to the inverse cascade process —J=—-2uE+ —, 7

[10]. At the same time, a direct cascade of the total enstro- dt S

phy, if realizable, involves only the fluid enstrophy and car-

ries virtually no kinetic energyor potential energy This

dynamical behavior is accessible to numerical anally&i. —E= —2Mf
There remains the question as to whether the kinetic en-

ergy is a finite dynamical quantity. Although the inverse cas-

cade in the regiotk<A is predominantly a cascade of po- where s=[F(K)dk/ [k 'F(k)dkeK and a corres-

tential energy, the “leaking” of kinetic energy to ever-larger . N ) Lo
: ponding localization hypothesis for the forcing is assumed.
scales cannot be ruled out. Nevertheless ik to become Namely, we require @k, [k F(k)dk=e=[«F(K)dk

unbounded as— o, it must do so at a vanishing growth rate. <k,fk F(K)dk. Now, if a quasisteady state is estab-

Two special cases af turbulence, governed by lished, in which the injectior becomes stead¥, is required
to be bounded from above by<e/(2us). Otherwise,J
would approach zero in the limit—c, which in turn would
entall

fmk‘ls(k)dk= FS(k)dk=o. (16)
0 0

“KE(K)dk+ e, (18)
0

%(—A)“/2¢+J(¢,(—A)“/2¢)=D(—A)“’2¢+f,
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dE o9 10-3 T UL T
a=—2ﬂf KE(k)dk+ e=2pu| s?J—2sE
0
—f (k—s)%k E(k)dk|+ €
0
<—3,LLSE+€ g 10-4 - _
[<5]
< — uSE, (19

for sufficiently large times. This would impfe—0 ast
—, a clear contradiction. Henck,is bounded from above
by E<e/(2us) in a quasisteady state.

The boundedness & imposes a stiff constraint dB(k), 1075 ol L
requiring that the spectrum be shallower thart for k<s. 1ee 1ot

The dlmens_longl analysis predictiik) ~k~* would imply FIG. 1. Inverse cascade of SQG turbulence in the absence of
a logarithmic divergence ofgE(k)dk. large-scale dissipation.

We attempted to mimic SQG turbulence in an unbounded
domain using a doubly periodic dealiased pseudospectralumber corresponding to the system size. Following Ref.
2731x2731 simulation and a Cash-Karp Runge-Kutta-[13], if E(k) has the formE(k)=ak™” for k<s and E(k)
Fehlberg temporal integrator. The turbulence was driveri- Pk~ ” for s<k<k,, wheres/k, <k, /s, we obtain the con-
from zero initial conditions at time=0 by a random forcing Strainty+B=3. In the limits s’k,—0 andko/s—0, this
bandlimited to[ 1198,1202 with velocity amplitude 0.0058, Constraint becomesg+ 8=3. ,
We used the truncated Fourier-transformed dissipation opera- !N conclusion, CHM turbulencéfor a general ratio\/s
tor D(k) = — ukH(k—1202), whereH is the Heaviside unit >0) is cha.ractenz_ed by an inverse cagcade of the potential
step function andu=0.054. While this truncation may in €nergy, which carries virtually no kinetic energy, tas .
principle break the constraint imposed by the boundedness &fore precisely, an inverse cascade of kinetic energy is ex-
E and lead to a steeper slope, one nevertheless obtains tRklded in the regiork<\. This makes the CHM dynamics
roughly k! transient spectrurttime averaged from=7 to distinct from its NS counterpart, although before thg inverse
t=8) shown in Fig. 1. This is considerably shallower thancascade reachas CHM turbulence may have much in com-
the NSk~52 spectrum and much tighter than thepriori mon with NS t_urbulen_cg. Similarly, the kinetic energy in the
estimateE(k)<ck 2 obtained in Ref[22]. The spike at SQG system is prohibited from being transferred to Ia_rge
wave number 1200 is a manifestation of the forcing. scales, just like the enstrophy for the NS system. In particu-

A direct energy cascade requires that the dissipation o the kinetic energy is the dissipation agent of the supposed
energy, which is proportional tgkE(k)dk, be primarily inverse-cascading quantity and is thereby requwed_to be
dominated by the high wave numbers, so ték) must be bounded. A§1a consequence, the energy spectrum is shal-
at least as shallow as 2 for k>s. Otherwise, energy will lower thank ™ for k<s.
be dissipated in the vicinity of the forcing wave numiser This work was funded by the Pacific Institute for the

For a bounded system in equilibrium, Eq$7) and(18)  Mathematical Sciences and the Natural Sciences and Engi-
imply ffo(s— k)E(k)dk=0, wherek, is the lowest wave neering Research Council of Canada.
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